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Weibull Pareto distribution is considered. Bayesian method of estimation is
employed in order to estimate the reliability function of Weibull Pareto
distribution by using non-informative and beta priors. In this paper, the Bayes
estimators of the reliability function have been obtained under squared error,

precautionary and entropy loss functions.
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1. Introduction
The Weibull Pareto distribution has been proposed by Alzaatreh et al. [1]. They
obtained the various properties of the distribution and proposed the method of modified
maximum likelihood estimation for estimating the parameters. The probability function
f (x;t9) and distribution function F (x;H) of Weibull Pareto distribution are respectively
given by
£ (x:0)=box™ zog(fjb 1 e_a{log(%)] ix>a>0b>1. (1)

a

F(x:6)=1-exp {—HPog (%Hh} Jx>a. 2)

Let R(t) denote the reliability function, that is, the probability that a system will

survive a specified time t comes out to be
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R(t)=exp {—H{log(éﬂb} Jt>a. (3)

And the instantaneous failure rate or hazard rate, h(t) is given by

h(t)=bor {log [éﬂ“ . )

From equation (1) and (3), we get

R = b[log(x/a)]b_]
f(x,R( ))_—x[log(t/a)}b

The joint density function or likelihood function of (5) is given by

) F LT o

The log likelihood function is given by

logf(ic|R(t)) =log ﬁ[M]

log(x/a) g

[—logR(t)][R(t)][’ag(t/a)J ; 0<R(t)<1. (5)

i=1

1| X [log(t/a)]b
+nlog [—log R(t)] + [g[log (xl./a)]b/[log (t/a)]h J log [R(t)}

Differentiating (7) with respect to R (t) and equating to zero, we get the maximum

likelihood estimator of R (t) as

(7)

A

R(1)= exp{—n{[log(t/a)]b Z[log(xi /a)]bH. 8)

2. Bayesian method of estimation

The Bayesian estimation procedure have been developed generally under squared

error loss function

L[]A?(t),R(t)j - [fe(t)_ze(t))z . ©)

where IAQ(t) is an estimate of R(t). The Bayes estimator under the above loss function,

sayIAi’(t)S , is the posterior mean, i.e.,

R(¢), = E[R(t)]. (10)
The squared error loss function is often used also because it does not lead extensive

numerical computation but several authors (Zellner [2], Basu & Ebrahimi [3]) have

recognized the inappropriateness of using symmetric loss function. Canfield [4] points out

that the use of symmetric loss function may be inappropriate in the estimation of
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reliability function. Norstrom [5] introduced an alternative asymmetric precautionary loss
function and also presented a general class of precautionary loss function with quadratic
loss function as a special case. A very useful and simple asymmetric precautionary loss

function is

o[ R(0.R() |- )

A

The Bayes estimator of R(t) under precautionary loss function is denoted byR(t) »»and is

obtained by solving the following equation

A L

R(1), =[E(R(t))12 : (12)

In many practical situations, it appears to be more realistic to express the loss in terms of

A

R(1)
R()

loss function is the entropy loss L(é)m[é”—ploge(é)—q, where 5=IA€(t)/R(t), and

the ratio

. In this case, Calabria and Pulcini [6] points out that a useful asymmetric

whose minimum occurs at R(¢)=R(f) when p>0, a positive error (R(t)>R(t)j causes
more serious consequences than negative error, and vice-versa. For small | p| value, the

function is almost symmetric when both R(t) and R(t) are measured in a logarithmic scale,

and approximately

2

R 2
L(a‘)oc%{zoggR(z)—logeR(r)} :

Also, the loss function L(&) has been used in Dey et al. [7] and Dey and Liu [8], in the

original form having p=1. Thus L(5) can be written as

L(8)=b[5~log,(5)-1]; b>0. (13)

The Bayes estimator of R(Z) under entropy loss function is denoted by 6y and is obtained

ro.{d{ss]]

For the situation where we have no prior information about R(t) , We may use non-

as

informative prior distribution

@(R(t)):m; 0<R(1)<1. (15)
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The most widely used prior distribution for R(Z) is a beta distribution with parameters

a, >0, given by

Iy (R(t)):ﬁ[R(t)Tl [-R()]"; 0<R()<1. (16)

3. Bayes estimators of R(z)under # (R(z))

Under A, (R(t)) , the posterior distribution is defined by
(x| R(2) I (R (1))
!f(ﬂR(’))h] (R(1))aR(t)

Substituting the values of / (R(t)) and f(x|R(t)) from equations (15) and (6) in (17), we

S(R(1)|x)= (17)

get ] _
[ el e

g <R (1) t]mog (sfe)] Liste] ]W
1 L vesor

dR(t)

oct—

Sostfe] floswa | 1
a0 ] R(1) log (7).

(o] 2T g (o]
j [R(t)][ﬂ’”g o [t} | [log R(e)]"" dR (1)

[log (xi/a)}b /[log (t/a)]b]n

r(n) (R (t)][é["’g("'/ o e [-log R(1)]""

or,  f(R(1)x)= (

(18)

Theorem 1. Assuming the squared error loss function, the Bayes estimate of R(t), is of the

form

—n

- [log (t/a)]b
Z[log(xl./a)]b

i=1

= >
—~
~

Proof. From equation (10), on using (18),
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R(r); = E[R(1)]
= R()7 (R(1)1x)dR()
(il:[log(xl_/a)]b/[log (t/a)]b )"

= j).R (l‘) F(n) |:R(t)J{’Z:l:DOg("x/”)]b/[lﬂg(f/a)]b ]f‘ [—log R (t):|n—l R (t)

) (g[log (xi/a)}b/[log (t/a)]b

jﬁMﬂ?WMWWWP%Mﬂ“Mm
0

L'(n)
. (lZ::[log (xi/a)]b/[k’g(t/a)]bj F(n)
) r(n)

((,Z::[log(x,./a)]h /[log(t/a)]bj . 1]’7

or, IAQ(I)S =

- [log(t/a)}b .
;[log (xi/a)]b

Theorem 2. Assuming the precautionary loss function, the Bayes estimate of R(t), is of

the form

R(r),=

, 2lesa)] | 20)
;[log(xl./a)]b

Proof. From equation (12), on using (18),

ZZ::[log(xi/a)]b/[log(t/a)]b
L' (n)

j |:R (t)][g[log(x‘/a)]b/[/og(t/a)]bJ*l I:—lOg R (t)]n—l AR (t)

ymmi
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(3o (/)] L1 a)] |

,H:R (t)}{g[log(x,/")]b/[/“g(t/ﬂ)]b]” [-log R (t):l"*l dR (t)

I(n) 0
_ (inzl[’og (x/a)] [[tog (1 “)]b]n r(n)
) r(n)

((fill[log(x"/ a)]'/ [log(t/a)]bj+ J

- ($oatsse? Lostion? |
(@Dog(xf/“)]b/ [log(t/a)]bju]n

or, IA?(I

N 2[log(t/a)]b '
;[log(x[/a)]b

Theorem 3. Assuming the entropy loss function, the Bayes estimate of R(t), is of the form

R(1)

|y [Ltoztwa)] o
;[log(xi/aﬂb

Proof. From equation (14), on using (18),

R()HﬁJHI b (Rl 9)ae(o)|
_1 @[zog(x,./a)]”/[1og(z/a)]”

1
2 R(1) r'(n)

-1

-1

j [R (t)][g[log(x,-/a)]b/[log(r/a)]b]—1 [-log R(l‘)]n_l dR(l‘)

-1

Zn: log(x,/a) " Mo (t/a) ’ "1 , ) )
- (H[ ¢ rJ(n/) Liog ]j !{R(t)][g["’g("'/"” JLesti] ]_2[-logR(t)]H dR (1)




Arun Kumar Rao & Himanshu Pandey 133

_(i[log(xi fa)] /[log(t/a)]bjn r(n)
r) [(Z::[log(xi Ja)] /[log(t/a)]bj—lJn

-1

[Z[zog s/a] sty |
[[2 [10g(x,/a)] [[log(t/a) ]_ J

or, IAQ(t)

i [log(t/a)]b .
;[log (x,./a)]b

4. Bayes estimators of R(¢)under h,(R(z))
Under 4, (R(t)) , the posterior distribution is defined by

f(R(l‘)‘ﬁ)Z 1 f(x‘R( )) (R(t)) (22)
J 7l R(1))dR(7)
Substituting the values of 4, (R ) and f( |R(t )) from equations (16) and (6) in (22),
we get
H[b[lfzg //)]] ][ g R(0T [R(0)] St e |
1| x| log(t/a)
o %ﬂ[m)]““ [1-r ()]
S(R(t)|x)= —
i
J‘ = [og t/ ] dR(1)
’ x= aﬂ [R =R
_ [R(t)][gpog o ot - [-tog R(1)]' [1-R(6)]""
LRG0 g (o) 1= r(e)) ar()

F(R(1)]x)= [R(t)][g[zog(x‘./aﬂ"/[zog(r/a ] aog kT T1-R()]"
n+l1 {

(& (N ttosom o]

(23)
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Theorem 4. Assuming the squared error loss function, the Bayes estimate of R(z), is of the

o)

Zl { J 1 Z[log (x/a)] [[log t/a)] ]+a+kJnH

Proof. From equation (10

form

S

kO

on using (23),

0),
R =E[R(1)] j.R x)dR(1)

[()J[H’g“”“ J Laog R [1-R()]”

(n+1) rz(‘; [ J[/(;[log x/a)] [[log(i/a)] J+a+kJM]

I R e g ()] (1= R(0)] ()

T(n+1) [jo [ ][ / [Z[log(xi/a)]b /[log(t/a)]hj+a+kJm}

1

0, fz ( J 2 [toz (/)] [tag )] bj+a+1+kjn+l.

:(—l)k [ﬂk J(/[ [log(x,/a)] /[ log t/a) J+a+kJn+l

Theorem 5. Assuming the precautionary loss function, the Bayes estimate of R(t), is of

dR(t)

the form

1

“<>P= o)

B-1

Z ( J(l Z[IOg x/a)] [[log(i/a)] J+a+k]

Proof. From equation (12), on using (23),

h=[ ey
{I(Rmff( 1)arto]

( J(/ Z[log x,/a)] [[log(/a)] j+a+2+kJn+1 5

pre (25)
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St 1 1 o ()] [1- (1)
S k p-1 c b , n+l
RONT(S N

j[R [ (/o] Lo ] [-log R(1)]'[1-R(1)]" dR(z)

dR(t)

—
—~
—
N—
1
—~
L

i H)[fz'ol(_ [ k_J[/(lzn;[log(xi/a)}b/[log(t/a)]bJ+a+ k”

R(t), =

2(_1)k (ﬂk_1J(/@:[h)g(xf/")]b/[log(’/a)]h]+a+2+’f]n+l |
g(—l)k [ﬂk—lJ(l/(iz::[log(xl./a)]b/[log(t/a)]b}r B kjn-H .

Theorem 6. Assuming the entropy loss function, the Bayes estimate of R(t), is of the form

S ([ Sttt Jraes| )
[’3 j $ e/ o) Jra-tos| v

Proof. From equation ng (23),

:jl

HRJ] { ]

D A Ay

[l A ittt rpen]”

dR (t)

j[R [Z[ sl ot [og R(1)] [1-R(1)]" " dr(2)

[ {ﬁ J [lg Ja)]' [ log(1/a) j+a+ Jl}
[ JW[ZP o8 J/[log(t/a)]bJ+a—1+kJM 7]

[ J[l S [ios(x, ]/[zog(t/a)]b}mkjm
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S (1) {"3 :](1/ (g[log(xi Ja)] /[log(t/a)]bJ+a+kjn+l

or,  R(t),=|—=

S (1) (ﬂ :J(/ [ [10g(x /a)] /[log(t/a)]bj+a—l+k]n+l

=1

5. Conclusion

We have obtained a number of Bayes estimators of reliability function R(#) of
Weibull Pareto distribution. In equations (19), (20), and (21), we have obtained the Bayes
estimators by using non-informative prior and in equations (24), (25), and (26), under beta
prior. From the above said equation, it is clear that the Bayes estimators of R (t) depend

upon the parameters of the prior distribution.
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